The Method of Interlacing Families

Siddharth Setlur

ETH Zürich

May 28, 2021

Siddharth Setlur (ETH Zürich)

The Method of Interlacing Families

< □

May 28, 2021 1 / 17

э.

э

5900

Introduction to interlacing families

æ.

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Introduction to interlacing families
- 2 Application to construct infinite families of bipartite Ramanujan graphs

Definition

A polynomials $g(x) = \prod_{i=1}^{n-1} (x - \alpha_i)$ interlaces another polynomial $f(x) = \prod_{i=1}^{n} (x - \beta_i)$ if

$$\beta_1 \le \alpha_1 \le \beta_2 \le \alpha_2 \le \dots \le \alpha_{n-1} \le \beta_n$$

Polynomials f_1, \ldots, f_k have a *common interlacing* if there exists a polynomial g that interlaces every f_i

Roots of Polynomials with a Common Interlacing

Lemma

Let f_1, \ldots, f_k be real-rooted polynomials of the same degree and have positive leading coefficients. We define

Outrage
$$f_{\emptyset} = \sum_{i=1}^{k} f_{i}$$

If f_1, \ldots, f_k have a common interlacing, then there exists i such that $\lambda_{\max}(f_i) \leq \lambda_{\max}(f_{\emptyset})$.

Lemma holds for the k^{th} largest roots The takeaway here is that when the polynomials have a common interlacing, "averaging" component wise behaves well with respect to the roots. This is not true in general, very easy counterxamples!

SQ Q

(1)

Roots of Polynomials with a Common Interlacing - Proof sketch

Proof.

- f_i is positive for large enough x, f_i has exactly one root $\geq \alpha_{n-1}$
 - f_i non-positive at α_{n-1}

 $\mathcal{A} \mathcal{A} \mathcal{A}$

largest root

Roots of Polynomials with a Common Interlacing - Proof sketch

Proof.

- f_i is positive for large enough x, f_i has exactly one root $\geq \alpha_{n-1}$
 - f_i non-positive at α_{n-1}
- f_{\emptyset} non-positive at α_{n-1} and then eventually positive
 - f_{\emptyset} has one (and hence largest) root $\geq \alpha_{n-1}$ say β_n

Roots of Polynomials with a Common Interlacing - Proof sketch

Proof.

- f_i is positive for large enough x, f_i has exactly one root $\geq \alpha_{n-1}$
 - f_i non-positive at α_{n-1}
- f_{\emptyset} non-positive at α_{n-1} and then eventually positive
 - f_{\emptyset} has one (and hence largest) root $\geq lpha_{n-1}$ say eta_n
- $0 = f_{\emptyset}(\beta_n) = \sum_{i=1}^k f_i(\beta_n) \implies \exists i : f_i(\beta_n) \ge 0$
- Largest root of f_i is between α_{n-1} and β_n

SQ Q

(0.0t

Interlacing Families

Definition (Interlacing Family)

Let S_1, \ldots, S_m be finite sets. Suppose that for every assignment $s_1, \ldots, s_m \in S_1 \times \cdots \times S_m$, f_{s_1}, \ldots, f_{s_m} are real-rooted polynomials, degree n polynomials with positive leading coefficients. Now for every partial assignment $s_1, \ldots, s_k \in S_1 \times \cdots \times S_k$ with k < m define

$$f_{s_1,s_2,...,s_k} = \sum_{s_{k+1} \in S_{k+1},...,s_m \in S_m} f_{s_1,...,s_k,s_k+1,...,s_m}$$

And finally

$$f_{\emptyset} = \sum_{s_1 \in S_1, \dots, s_m \in S_m} f_{s_1, \dots, s_m}$$

 $\{f_{s_1,...,s_m}\}$ form an interlacing family if for all k and every partial assignment: $\{f_{s_1,...,s_k,t}\}_{t\in S_{k+1}}$ have a common interlacing

Siddharth Setlur (ETH Zürich)

The Method of Interlacing Families

expection

Theorem

Let S_1, \ldots, S_m be finite sets and $\{f_{s_1,\ldots,s_m}\}$ be an interlacing family. Then there exists some assignment $s_1, \ldots, s_m \in S_1 \times \cdots \times S_m$ such that $\lambda_{\max}(f_{s_1,\ldots,s_m}) \leq \lambda_{\max}(f_{\emptyset})$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Checking if f_1, \ldots, f_k have a common interlacing is difficult in a lot of cases

Lemma

Let f_1, \ldots, f_k be polynomials of the same degree with positive leading coefficients. Then f_1, \ldots, f_k have a common interlacing if and only if all convex combinations of f_1, \ldots, f_k are real rooted

$$\sum_{i=1}^{k} \lambda_i f_i \text{ real-rooted } \forall \lambda_i \ge 0, \sum_{i=1}^{k} \lambda_i = 1$$

Convex combinations real rooted >>

SQ P

Assuming we have a family $\{f_{s_1,...,s_m}\}$ of real-rooted, degree *n* polynomials with positive leading coefficients:

Prove that the family is indeed an interlacing family. This often amounts to the problem of proving real-rootedness of convex combinations

Assuming we have a family $\{f_{s_1,...,s_m}\}$ of real-rooted, degree *n* polynomials with positive leading coefficients:

- Prove that the family is indeed an interlacing family. This often amounts to the problem of proving real-rootedness of convex combinations
- 2 Bound the "average" polynomial f_{\emptyset}

Interlacing Families 1: Bipartite Ramanujan Graphs

Goal: Construct infinite families of bipartite *d*-regular graphs with *non-trivial eigenvalues* bounded by $2\sqrt{d-1}$. Idea: Start with a *d*-regular bipartite Ramanujan graph *G* with *n* vertices and *m* edges and construct a 2-lift of *G* whose eigenvalues remain bounded by $2\sqrt{d-1}$

2-Lifts and Signings

Theorem (Eigenvalues of 2-Lifts)

Let A be the adjacency matrix of a graph G and A_s be the sign matrix of some 2-lift of G, then the eigenvalues of the 2-lifted graph is the union of the eigenvalues of the original graph and the eigenvalues of A_s

Can we always find a 2-lift such that the eigenvalues of A_s are bounded by $2\sqrt{d-1}$?

Applying the method of interlacing families:

$$f_s = \det(xI - A_s) \tag{2}$$

We have a real-rooted, degree n polynomial with positive leading coefficient for each signing of G

SQ P

 $\mathcal{A} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

Definition

Let G be a graph with n vertices then $\mu_G = \sum_{i \ge 0} x^{n-2i} (-1)^i m_i$ is its matching polynomial.

Where m_i is the number of matchings of G with i edges. A matching of a graph is any subset of edges, such that no vertex is touched more than once.

Theorem

Let G be a graph, then $\mu_G(x)$ is real-rooted. Let G have maximum degree d, then all roots of μ_G have absolute value bounded by $2\sqrt{d-1}$

SQ Q

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Bounding the Average with μ_{G}

Roots of
$$M_G$$
 Gounded by $2JOL-I \implies If$ we show f_S is an interlacing family we are done!

Theorem

Let G be a graph with n vertices and m edges and $f_{\rm s}$ be defined as above, then

$$f_{\emptyset} = \mathbb{E}_{s \in \{\pm 1\}^m}[f_s(x)] = \mu_G(x)$$

$$= |E_{s} [det(nE - A_{s})]$$

= |E_{s} [sum over permutations]
= sum |E_{s} (permutations)

æ

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Definition (Real Stability)

A multivariate polynomial $f \in \mathbb{R}[z_1, \ldots, z_n]$ is real stable if $f \equiv 0$ or if

$$\Im(z_i) > 0 \forall i \implies f(z_1, \ldots, z_n) \neq 0$$

Closure under:

- **①** Scaling $f \mapsto cf(a_1z_1, ..., a_nz_n), c \in \mathbb{C}, a \in \mathbb{R}^n$
- 2 Specialization: $f \mapsto f(a, z_2, \ldots, z_n), a \text{ with } \Im(a) \ge 0$
- **3** Differentiation $f \mapsto \partial_1 f$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

We need to prove that nodes with a common parent
have a common interlacing
Five that all convex combinations of these nodes are
real-rooted
Show that they are images of real-stable polynomials
under operations that preserve real stability
Show
$$\sum f_{s_1, \dots, s_{k+1}}(w) + (1-\lambda) f_{s_1, \dots, s_{k-1}}(w)$$
 is
real-rooted $\forall \lambda \in Co, T$ and all partial assignments
 $S_{1, \dots, S_{k}}$ are fixed; S_{k+1} is ± 1 with prob ≥ 8
 -1 with prob $\lfloor 1-\lambda \rfloor$
 $j \leq kr_2, \dots, s_m$ are uniformly ± 1
prob $\frac{1}{2}$ each
Essentially proving that all of these conditional expectations
are real rooted.
So it we prove $f_{\sum s \in \Sigma_{k}}^{E} f_{\sum s}(w)$ is real rooted for
any independent distribution of signings we are done
since the special conditional expectations are g the
torm
Note that we already know this for $f_{z} = f_{z} T_{z}^{z}$, so
we are generalizing " this for any distribution.

Idea: Show f are the image of real-stable
polynomials under operations that preserve real-stability
MSS showed that
$$E[X(Z, q, a; *)]$$
 is real rooted
for $a_{1,1}..., a_{h}$ independently chosen random vectors
 $E[X(Za; a; *)]$ is the nixed characteristic polynomial
 $a_{1,...,q}$ an
How to bring $\sum_{s \in HIM} f_{s}(n) = \sum_{s \in HIM} X(A_{s})$ to the form
 g a mixed characteristic polynomial?
Need to express A_{s} as the soun g random vank 1
Matrices
for each edge in our graph we add
 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ or $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$
 $sign + 1$ sign - 1
but these are rank $2!$ To fix this we
add 1s along the diagonal, so we instead add:
 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ or $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 & 1 \end{pmatrix}$
So we have $A_{s} + D = \sum_{i=1}^{n} a_{i}^{i}$ where
 $a_{i} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ or $a_{i}^{i} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ independently.