The Method of Interlacing Families

Siddharth Setlur
ETH Zürich
May 28, 2021

Outline

(1) Introduction to interlacing families

Outline
(1) Introduction to interlacing families
(2) Application to construct infinite families of bipartite Ramanujan graphs
If time permits:
Let A be a bounded operator. Then there exists a signing of A sit $\|\underbrace{\left\|O_{S}^{C}\right\|_{2}}_{\downarrow}<2\| A \|_{e_{\infty}}$ entry-wise product

$$
\left.\left(\begin{array}{ll}
A & 0 \\
0 & A^{+}
\end{array}\right)\right\}
$$

Polynomials with a Common Interlacing

Definition

A polynomials $g(x)=\prod_{i=1}^{n-1}\left(x-\alpha_{i}\right)$ interlaces another polynomial $f(x)=\prod_{i=1}^{n}\left(x-\beta_{i}\right)$ if

$$
\beta_{1} \leq \alpha_{1} \leq \beta_{2} \leq \alpha_{2} \leq \cdots \leq \alpha_{n-1} \leq \beta_{n}
$$

Polynomials f_{1}, \ldots, f_{k} have a common interlacing if there exists a polynomial g that interlaces every f_{i}

Roots of Polynomials with a Common Interlacing

Lemma

Let f_{1}, \ldots, f_{k} be real-rooted polynomials of the same degree and have positive leading coefficients. We define

If f_{1}, \ldots, f_{k} have a common interlacing, then there exists i such that $\lambda_{\text {max }}\left(f_{i}\right) \leq \lambda_{\max }\left(f_{\emptyset}\right)$.

Lemma holds for the $k^{t h}$ largest roots
The takeaway here is that when the polynomials have a common interlacing, "averaging" component wise behaves well with respect to the roots. This is not true in general, very easy counterxamples!

Roots of Polynomials with a Common Interlacing - Proof sketch

largest root

Proof.

- f_{i} is positive for large enough x, f_{i} has exactly one root $\geq \alpha_{n-1}$
- f_{i} non-positive at α_{n-1}

Roots of Polynomials with a Common Interlacing - Proof sketch

Proof.

- f_{i} is positive for large enough x, f_{i} has exactly one root $\geq \alpha_{n-1}$
- f_{i} non-positive at α_{n-1}
- f_{\emptyset} non-positive at α_{n-1} and then eventually positive
- f_{\emptyset} has one (and hence largest) root $\geq \alpha_{n-1}$ say β_{n}

Roots of Polynomials with a Common Interlacing - Proof sketch

Proof.

- f_{i} is positive for large enough x, f_{i} has exactly one root $\geq \alpha_{n-1}$
- f_{i} non-positive at α_{n-1}
- f_{\emptyset} non-positive at α_{n-1} and then eventually positive
- f_{\emptyset} has one (and hence largest) root $\geq \alpha_{n-1}$ say β_{n}
- $0=f_{\emptyset}\left(\beta_{n}\right)=\sum_{i=1}^{k} f_{i}\left(\beta_{n}\right) \Longrightarrow \exists i: f_{i}\left(\beta_{n}\right) \geq 0$
- Largest root of f_{i} is between α_{n-1} and β_{n}

$$
\text { eargest coot of } F_{p}
$$

Interlacing Families

Definition (Interlacing Family)

Let S_{1}, \ldots, S_{m} be finite sets. Suppose that for every assignment $s_{1}, \ldots, s_{m} \in S_{1} \times \cdots \times S_{m}, f_{s_{1}}, \ldots, s_{s_{m}}$ are real-rooted polynomials, degree n polynomials with positive leading coefficients.
Now for every partial assignment $s_{1}, \ldots, s_{k} \in S_{1} \times \cdots \times S_{k}$ with $k<m$ define

And finally

$$
f_{\emptyset}=\sum_{s_{1} \in S_{1}, \ldots, s_{m} \in S_{m}} f_{s_{1}, \ldots, s_{m}}
$$

$\left\{f_{s_{1}, \ldots, s_{m}}\right\}$ form an interlacing family if for all k and every partial assignment: $\left\{f_{s_{1}, \ldots, s_{k}, t}\right\}_{t \in S_{k+1}}$ have a common interlacing

$$
\begin{aligned}
& S_{i}=\{ \pm 1\}, i \in\{1,2\}
\end{aligned}
$$

Roots of Interlacing Families

Theorem

Let S_{1}, \ldots, S_{m} be finite sets and $\left\{f_{s_{1}, \ldots, s_{m}}\right\}$ be an interlacing family. Then there exists some assignment $s_{1}, \ldots, s_{m} \in S_{1} \times \cdots \times S_{m}$ such that $\lambda_{\max }\left(f_{s_{1}, \ldots, s_{m}}\right) \leq \lambda_{\max }\left(f_{\emptyset}\right)$

Real-rootedness criterion

Checking if f_{1}, \ldots, f_{k} have a common interlacing is difficult in a lot of cases

Lemma

Let f_{1}, \ldots, f_{k} be polynomials of the same degree with positive leading coefficients. Then f_{1}, \ldots, f_{k} have a common interlacing if and only if all convex combinations of f_{1}, \ldots, f_{k} are real rooted

$$
\sum_{i=1}^{k} \lambda_{i} f_{i} \text { real-rooted } \forall \lambda_{i} \geq 0, \sum_{i=1}^{k} \lambda_{i}=1
$$

Convex combinations real rooted \Rightarrow

Structure of a Proof Using Interlacing Families

Assuming we have a family $\left\{f_{s_{1}, \ldots, s_{m}}\right\}$ of real-rooted, degree n polynomials with positive leading coefficients:
(1) Prove that the family is indeed an interlacing family. This often amounts to the problem of proving real-rootedness of convex combinations

Structure of a Proof Using Interlacing Families

Assuming we have a family $\left\{f_{s_{1}, \ldots, s_{m}}\right\}$ of real-rooted, degree n polynomials with positive leading coefficients:
(1) Prove that the family is indeed an interlacing family. This often amounts to the problem of proving real-rootedness of convex combinations
(2) Bound the "average" polynomial f_{\emptyset}

Interlacing Families 1: Bipartite Ramanujan Graphs

Goal: Construct infinite families of bipartite d-regular graphs with non-trivial eigenvalues bounded by $2 \sqrt{d-1}$.
Idea: Start with a d-regular bipartite Ramanujan graph G with n vertices and m edges and construct a 2 -lift of G whose eigenvalues remain bounded by $2 \sqrt{d-1}$

2-Lifts and Signings

We make a copy of the graph. Then for every edge in the copy, we have 2 choices either leave the edge connecting the copied vertices or cross them with vertices in the original graph.
Sign each edge ± 1 to denote whether we crossed or not.
Can we find a signing sit 2 -Lifted graph has $\lambda \leq 2 \sqrt{d-1}$

Can we always find a 2 -lift such that the eigenvalues of A_{s} are bounded by $2 \sqrt{d-1}$?
Applying the method of interlacing families:

$$
\begin{equation*}
f_{s}=\operatorname{det}\left(x I-A_{s}\right) \tag{2}
\end{equation*}
$$

We have a real-rooted, degree n polynomial with positive leading coeffiecient for each signing of G

$$
\begin{aligned}
& A=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& A_{S}=\left(\begin{array}{cccc}
0 & H 14 & 0 & 0 \\
0 & 0 & E 1 & 0 \\
0 & E 1 & 0 & E D \\
0 & 0 & E 1 & 0
\end{array}\right)
\end{aligned}
$$

The Matching Polynomial

Definition

Let G be a graph with n vertices then $\mu_{G}=\sum_{i>0} x^{n-2 i}(-1)^{i} m_{i}$ is its matching polynomial.
Where m_{i} is the number of matchings of G with i edges. A matching of a graph is any subset of edges, such that no vertex is touched more than once.

Theorem

Let G be a graph, then $\mu_{G}(x)$ is real-rooted.
Let G have maximum degree d, then all roots of μ_{G} have absolute value bounded by $2 \sqrt{d-1}$

$$
\Rightarrow \mu_{c}(x)=x^{4}-6 x^{2}+3
$$

Bounding the Average with μ_{G}
Roots $0 \mu_{G}$ bounded by $2 \sqrt{d-1} \Rightarrow$ If we show ${ }^{6} f_{s}$ is an interlacing family we are done!

Theorem
Let G be a graph with n vertices and m edges and f_{s} be defined as above, then

$$
\begin{aligned}
f_{\emptyset} & =\mathbb{E}_{s \in\{ \pm 1\}^{m}}\left[f_{s}(x)\right]=\mu_{G}(x) \\
& =\mathbb{E}_{S}\left[\operatorname{det}\left(n\left[-A_{S}\right)\right]\right. \\
& =\mathbb{E}_{S}[\text { sum over permutations }] \\
& =\operatorname{sum} \mathbb{E}_{S} \text { (permutations) }
\end{aligned}
$$

Definition (Real Stability)

A multivariate polynomial $f \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]$ is real stable if $f \equiv 0$ or if

$$
\Im\left(z_{i}\right)>0 \forall i \Longrightarrow f\left(z_{1}, \ldots, z_{n}\right) \neq 0
$$

Closure under:
(1) Scaling $f \mapsto c f\left(a_{1} z_{1}, \ldots, a_{n} z_{n}\right), c \in \mathbb{C}, a \in \mathbb{R}^{n}$
(2) Specialization: $f \mapsto f\left(a, z_{2}, \ldots, z_{n}\right)$, a with $\Im(a) \geq 0$
(3) Differentiation $f \mapsto \partial_{1} f$

We need to prove that nodes with a common parent have a common interlacing

Prove that all convex combinations of these nodes are real-rooted
Show that they are images of real-stable polynomials under operations that preserve real stability
Show

$$
\lambda f_{s_{1}, \ldots, s_{k},+1}
$$

(n) $+(1-\lambda) f_{s, \ldots, s_{m}-1}$
(u) is
real-rooted $\forall \lambda \in[0,1]$ and all partial assignments S_{1}, \ldots, S_{k}
s_{1}, \ldots, s_{k} are fixed; s_{k+1} is +1 with prob $\lambda 8$ -1 with prob (1-八)

$$
; s_{n+2}, \ldots s_{m} \text { are } \underbrace{u_{10} f_{1 / 2} \text { eachly each }}_{\text {prob }}
$$

Essentially proving that all of these conditional expectations are real rooted.
So if we prove $\underset{s \in\{ \pm 1\}^{m}}{\mathbb{E}}\left[f_{s}(n)\right]$ is real rooted for
any independent distribution of signings we are done since the special conditional expectations are of this form
Note that we already know this for $f_{\phi}=\mathbb{E}_{s}\left[f_{s}\right]$ where abl " s_{1}, \ldots, s_{m}, were picked uniformly $\pm 1 / 2$, so we are "generalizing" this for any distribution.

Idea: Show f are the images of real-stable polynomials under operations thar pily. preserve veal-stability MSS showed that $\mathbb{E}\left[\widetilde{X}\left(\mathcal{L}_{i} a_{i} a_{i}^{*}\right)\right]$ is real rooted for a_{1}, \ldots, a_{n} independently chosen random vectors $\mathbb{E}\left[\chi\left(\sum a_{i} a_{i}^{*}\right)\right]$ is the mixed characteristic polynomial How to bring $\sum_{s \in\{ \pm 1\}^{m}} f_{s}(x)=\sum_{s \in\{ \pm 1\}^{n}} \chi\left(A_{s}\right)$ to the form of a mixed characteristic polynomial? Need to express A_{s} as the sum of random rank 1 Matrices

For each edge in our graph we add

$$
\underbrace{\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)}_{\text {Sign }+1} \text { or } \underbrace{\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)}_{\operatorname{sign}-1} \text { to } A_{s}
$$

But these are rank 2 ! To fix this we add 1 s along the diagonal, so we instead add:

$$
\left.\binom{1}{1}(1)\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)=\binom{-1}{1}\left(\begin{array}{ll}
-1 & 1
\end{array}\right)
$$

So we have $A_{s}+D=\sum a_{i} a_{i}^{\top}$ where $a_{i}=\binom{1}{1}$ or $a_{i}=\binom{-1}{-1}$ independently.

